过年关啦!阿里送上了今年最后一份礼物——

“眼睛”模型QVQ,其中V代表视觉。它只需读取图像和指令,就可以开始思考。

I’m watching you!

据介绍,这可能是全球第一个视觉推理模型,也可以把它理解为上个月开源的阿里版o1模型QwQ的视觉版本。

可以解决数物化生等各领域问题。

读梗图、数鸭子也不在话下。

目前该模型处于实验阶段,开放测试。

结果可能因为访问过多,网页一度还404了。

从性能表现上看,QVQ在MMMU 上的得分为 70.3,这一结果超过GPT-4o、Claude 3.5 Sonnet,但比o1模型还差了那么一点。

阿里开源首个视觉推理模型

官方给了几个演示Demo,让咱们好好感知一下它的推理能力。

首先来看这道数学题。

解题思路如下:

再来个几何题,算算这个沙发的面积。

它的推理过程如下:

高中化学题:图片中的滤液E是什么化学物质?

它的答案是:硫酸亚铁溶液。

他们在四个数据集对眼睛模型QVQ-72B-Preview进行了评估,包括MMMU、MathVista、MathVision、OlympiadBench,主要考察数学多模态推理以及综合理解推理方面的能力。

QVQ-72B-Preview在 MMMU 基准测试中取得了70.3分,大大超过了其前身 Qwen2-VL-72B-Instruct。

此外,在其余三个以数学和科学问题为重点的基准测试中,该模型也表现出了卓越的性能,缩小了与o1模型之间的差距。

不过目前该模型属于是团队的实验研究模型,不是特别稳定,有几个限制需要注意。

  • 语言混合和代码切换:该模型可能会意外地混合语言或在语言之间切换,从而影响回答的清晰度。

  • 递归推理:模型可能会陷入循环逻辑模式,产生冗长的回复而无法得出结论。

  • 安全和道德方面的考虑:该模型需要加强安全措施,以确保性能可靠和安全,用户在部署时应谨慎。

  • 性能和基准限制:尽管该模型在视觉推理方面有所改进,但它不能完全取代 Qwen2-VL-72B-Instruct 的功能。此外,在多步骤视觉推理过程中,模型可能会逐渐失去对图像内容的关注,从而导致幻觉。

好好预防针打了,那咱们浅浅实测一波。

比如这道考验谷歌版o1的题目:

如何利用这些数字加起来等于30?

结果它识别出来了这几个球对应的数字,没有意识到9号球可以翻转成6号球,然后就陷入无尽的思考之中。。。

在blog最后,他们也透露了接下来的目标——增强视觉语言基础模型,使其具备基于视觉信息进行深度思考和推理的高级能力。

把时间拉长,他们计划是将更多的模态整合到统一的模型中,能够应对复杂的挑战并参与科学探索。

(模型尽头是AI For Science?)

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

Logo

ModelScope旨在打造下一代开源的模型即服务共享平台,为泛AI开发者提供灵活、易用、低成本的一站式模型服务产品,让模型应用更简单!

更多推荐