重点:Qwen2提供了CPU与GPU两种运行方式

运行成功效果图:

前提说明:如果需要用GPU,那么请在物理机安装ubuntu系统,不然显卡驱动很难安装,不建议新手部署。训练微调模型需要用到GPU。本文仅以ubuntu系统演示说明。

1、首先我们安装一个Ubutun系统,安装系统不展开说明,自行安装,我安装的是117~20.04.1-Ubuntu

2、新建2个文件夹,用于下载模型以及Qwen源码。

mkdir -p /usr/local/project/conda/Qwen  #【用来存放Qwen2源码】mkdir -p /home/zhangwei/llm  #【用来存放Qwen2模型】

3、利用git clone 下载源码以及模型

root@zhangwei-H610M-K-DDR4:/# cd  /usr/local/project/conda/Qwen #【进入文件夹】root@zhangwei-H610M-K-DDR4:/# git clone https://github.com/QwenLM/Qwen.git#【下载Qwen源码】root@zhangwei-H610M-K-DDR4:/usr/local/project/conda/Qwen# ls ascend-support   docker      FAQ.md        LICENSE         process_data_law.py         README_ES.md   recipes                     tech_memo.md             'Tongyi Qianwen LICENSE AGREEMENT'            tran_data_law1.json assets           eval        FAQ_zh.md     NOTICE          qweb_lora_merge.py          README_FR.md   requirements.txt            tokenization_note_ja.md  'Tongyi Qianwen RESEARCH LICENSE AGREEMENT'   utils.py cli_demo.py      examples    finetune      openai_api.py   QWEN_TECHNICAL_REPORT.pdf   README_JA.md   requirements_web_demo.txt   tokenization_note.md      train_data_law2.json                         web_demo.py dcu-support      FAQ_ja.md   finetune.py   output_qwen     README_CN.md                README.md      run_gptq.py                 tokenization_note_zh.md   train_data_law.jsonroot@zhangwei-H610M-K-DDR4:/usr/local/project/conda/Qwen# cd  /home/zhangwei/llm#【进入文件夹】root@zhangwei-H610M-K-DDR4:/home/zhangwei/llm# git clone https://www.modelscope.cn/qwen/Qwen-1_8B-Chat.git#【下载Qwen_1_8模型】root@zhangwei-H610M-K-DDR4:/home/zhangwei/llm# lsQwen-1_8B-Chat  Qwen-1_8B-Chat_law2  Qwen-1_8B-Chat_law3  Qwen-1_8B-Chat_law4  tran_data_law1.json  tran_data_law.json 

4、安装miniconda以及python3.10【注意:必须安装3.10版本,否则启动不了】

root@zhangwei-H610M-K-DDR4:/# wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh --no-check-certificateroot@zhangwei-H610M-K-DDR4:/# bash ~/miniconda.shroot@zhangwei-H610M-K-DDR4:/# conda initroot@zhangwei-H610M-K-DDR4:/# source ~/.bashrcroot@zhangwei-H610M-K-DDR4:/# conda --versionconda 24.5.0root@zhangwei-H610M-K-DDR4:/#conda create -n pytorch2 python=3.10root@zhangwei-H610M-K-DDR4:/#conda activate pytorch2root@zhangwei-H610M-K-DDR4:/#conda install pytorch torchvision torchaudio cpuonly -c pytorchroot@zhangwei-H610M-K-DDR4:/#python -c "import torch; print(torch.__version__); print(torch.cuda.is_available())"root@zhangwei-H610M-K-DDR4:/#python --versionPython 3.10.14

5、安装所需模块

root@zhangwei-H610M-K-DDR4:/# cd /usr/local/project/conda/Qwen#在源码目录下有2个txt,分别为:requirements.txt,requirements_web_demo.txt安装他们root@zhangwei-H610M-K-DDR4: /usr/local/project/conda/Qwen/# pip install -r requirements.txtpip install -r requirements_web_demo.txt#最后启动web界面root@zhangwei-H610M-K-DDR4: /usr/local/project/conda/Qwen/# python web_demo.py --server-name 0.0.0.0 -c /home/zhangwei/llm/Qwen-1_8B-Chat --cpu-only#启动后打印如下信息,可以在浏览器输入http://ip:8000,最终呈现文章开头的页面/home/zhangwei/conda/envs/pytorch2/lib/python3.10/site-packages/torch/cuda/__init__.py:619: UserWarning: Can't initialize NVML  warnings.warn("Can't initialize NVML")Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotaryWarning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_normWarning: import flash_attn fail, please install FlashAttention to get higher efficiency https://github.com/Dao-AILab/flash-attentionLoading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 15.99it/s]Running on local URL:  http://0.0.0.0:8000To create a public link, set `share=True` in `launch()`.IMPORTANT: You are using gradio version 3.41.2, however version 4.29.0 is available, please upgrade.--------#--cpu-only这个参数是仅用cpu来跑

欢迎大家一起探讨,后续会更新微调Qwen2模型

转至:https://blog.csdn.net/zhangweiaixiu/article/details/140008617

Logo

ModelScope旨在打造下一代开源的模型即服务共享平台,为泛AI开发者提供灵活、易用、低成本的一站式模型服务产品,让模型应用更简单!

更多推荐