
NPU推理&微调大模型实战
本文为魔搭社区轻量级训练推理工具SWIFT微调实战教程系列
SWIFT(Scalable lightWeight Infrastructure for Fine-Tuning)是魔搭ModelScope开源社区推出的一套完整的轻量级训练、推理、评估和部署工具,支持200+大模型、15+多模态大模型以及10+轻量化Tuners,让AI爱好者能够使用自己的消费级显卡玩转大模型和AIGC。
近日,许多开发者提出希望魔搭社区的工具可以与NPU等更多类型的卡兼容。在社区开发者钏助斌的联合支持下,魔搭社区ms-swift大模型微调框架进行了适配。目前,ms-swift可支持NPU的单卡、DDP、ZeRO2和ZeRO3的训练与推理。接下来,将以Qwen1.5-7B-Chat为例,为大家提供基于NPU推理和微调大模型实操的教程,具体代码放置在GitHub。
环境准备
实验环境:8 * 昇腾910B3,每张卡的显存为64GB (感谢昇腾社区对modelscope和swift的支持~)
这里我们对实验环境进行安装,其中包含了虚拟环境的创建、ms-swift以及相关依赖的安装以及torch-npu的安装。
# 创建新的conda虚拟环境(可选)
conda create -n swift-npu python=3.10 -y
conda activate swift-npu
# 设置pip全局镜像 (可选,加速下载)
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
# 安装ms-swift(当前推荐从源码安装, 待发版后可直接pip安装)
git clone https://github.com/modelscope/swift.git
cd swift
pip install -e '.[llm]'
# 安装torch-npu
pip install torch-npu decorator
# 如果你想要使用deepspeed (控制显存占用,训练速度会有一定下降)
pip install deepspeed
# 环境对齐 (通常不需要运行. 如果你运行错误, 可以跑下面的代码, 仓库使用最新环境测试)
pip install -r requirements/framework.txt -U
pip install -r requirements/llm.txt -U
安装完环境后,我们测试实验环境是否安装正确,NPU能否被正常加载:
from transformers.utils import is_torch_npu_available
import torch
print(is_torch_npu_available()) # True
print(torch.npu.device_count()) # 8
print(torch.randn(10, device='npu:0'))
查看NPU的P2P连接,这里看到每个NPU都通过7条HCCS与其他NPU互联
(valle) root@valle:~/src# npu-smi info -t topo
NPU0 NPU1 NPU2 NPU3 NPU4 NPU5 NPU6 NPU7 CPU Affinity
NPU0 X HCCS HCCS HCCS HCCS HCCS HCCS HCCS 144-167
NPU1 HCCS X HCCS HCCS HCCS HCCS HCCS HCCS 144-167
NPU2 HCCS HCCS X HCCS HCCS HCCS HCCS HCCS 96-119
NPU3 HCCS HCCS HCCS X HCCS HCCS HCCS HCCS 96-119
NPU4 HCCS HCCS HCCS HCCS X HCCS HCCS HCCS 0-23
NPU5 HCCS HCCS HCCS HCCS HCCS X HCCS HCCS 0-23
NPU6 HCCS HCCS HCCS HCCS HCCS HCCS X HCCS 48-71
NPU7 HCCS HCCS HCCS HCCS HCCS HCCS HCCS X 48-71
Legend:
X = Self
SYS = Path traversing PCIe and NUMA nodes. Nodes are connected through SMP, such as QPI, UPI.
PHB = Path traversing PCIe and the PCIe host bridge of a CPU.
PIX = Path traversing a single PCIe switch
PXB = Path traversing multipul PCIe switches
HCCS = Connection traversing HCCS.
NA = Unknown relationship.
查看NPU状态, npu-smi命令详解可以查看官方文档(https://support.huawei.com/enterprise/zh/doc/EDOC1100079287/10dcd668)
(valle) root@valle:~/src# npu-smi info
+------------------------------------------------------------------------------------------------+
| npu-smi 24.1.rc1.b030 Version: 24.1.rc1.b030 |
+---------------------------+---------------+----------------------------------------------------+
| NPU Name | Health | Power(W) Temp(C) Hugepages-Usage(page)|
| Chip | Bus-Id | AICore(%) Memory-Usage(MB) HBM-Usage(MB) |
+===========================+===============+====================================================+
| 0 910B3 | OK | 101.8 43 0 / 0 |
| 0 | 0000:C1:00.0 | 0 0 / 0 3318 / 65536 |
+===========================+===============+====================================================+
| 1 910B3 | OK | 92.0 39 0 / 0 |
| 0 | 0000:C2:00.0 | 0 0 / 0 3314 / 65536 |
+===========================+===============+====================================================+
| 2 910B3 | OK | 102.0 40 0 / 0 |
| 0 | 0000:81:00.0 | 0 0 / 0 3314 / 65536 |
+===========================+===============+====================================================+
| 3 910B3 | OK | 99.8 40 0 / 0 |
| 0 | 0000:82:00.0 | 0 0 / 0 3314 / 65536 |
+===========================+===============+====================================================+
| 4 910B3 | OK | 98.6 45 0 / 0 |
| 0 | 0000:01:00.0 | 0 0 / 0 3314 / 65536 |
+===========================+===============+====================================================+
| 5 910B3 | OK | 99.7 44 0 / 0 |
| 0 | 0000:02:00.0 | 0 0 / 0 3314 / 65536 |
+===========================+===============+====================================================+
| 6 910B3 | OK | 103.8 45 0 / 0 |
| 0 | 0000:41:00.0 | 0 0 / 0 3314 / 65536 |
+===========================+===============+====================================================+
| 7 910B3 | OK | 98.2 44 0 / 0 |
| 0 | 0000:42:00.0 | 0 0 / 0 3315 / 65536 |
+===========================+===============+====================================================+
微调
接下来,我们介绍在单卡、DDP、ZeRO2和ZeRO3的设置下,使用ms-swift对Qwen1.5-7B-Chat在blossom-math-zh数据集下进行LoRA微调的sh脚本、显存需求和运行时长。如果要进行全参数的微调,设置参数--sft_type full即可。要了解更多的超参数设置,请查看ms-swift的官方文档:https://github.com/modelscope/swift/blob/main/docs/source/LLM/index.md
单卡训练
通过如下命令启动单卡微调:
# 实验环境: 昇腾910B3
# 显存需求: 28 GB
# 运行时长: 8小时
ASCEND_RT_VISIBLE_DEVICES=0 \
swift sft \
--model_type qwen1half-7b-chat \
--dataset blossom-math-zh \
--num_train_epochs 5 \
--sft_type lora \
--output_dir output \
数据并行训练
我们使用其中的4卡进行ddp训练
# 实验环境: 4 * 昇腾910B3
# 显存需求: 4 * 22 GB
# 运行时长: 2小时
NPROC_PER_NODE=4 \
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_type qwen1half-7b-chat \
--dataset blossom-math-zh \
--num_train_epochs 5 \
--sft_type lora \
--output_dir output \
Deepspeed训练
ZeRO2:
# 实验环境: 4 * 昇腾910B3
# 显存需求: 4 * 28GB
# 运行时长: 3.5小时
NPROC_PER_NODE=4 \
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_type qwen1half-7b-chat \
--dataset blossom-math-zh \
--num_train_epochs 5 \
--sft_type lora \
--output_dir output \
--deepspeed default-zero2 \
ZeRO3:
# 实验环境: 4 * 昇腾910B3
# 显存需求: 4 * 22 GB
# 运行时长: 8.5小时
NPROC_PER_NODE=4 \
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_type qwen1half-7b-chat \
--dataset blossom-math-zh \
--num_train_epochs 5 \
--sft_type lora \
--output_dir output \
--deepspeed default-zero3 \
这里展示在不同设置下(单卡、DDP、ZeRO2和ZeRO3)进行LoRA微调的NPU的显存占用情况:
模型大小 | NPU数量 | 训练设置 | 最大显存占用量 |
7B | 1 | 单卡 | 1 * 28 GB |
7B | 4 | DDP | 4 * 22 GB |
7B | 4 | ZeRO2 | 4 * 28 GB |
7B | 4 | ZeRO3 | 4 * 22 GB |
7B | 8 | DDP | 8 * 22 GB |
14B | 1 | 单卡 | 1 * 45 GB |
14B | 8 | DDP | 8 * 51 GB |
14B | 8 | ZeRO2 | 8 * 49 GB |
14B | 8 | ZeRO3 | 8 * 31 GB |
推理
然后,我们展示使用ms-swift对原始的Qwen1.5-7B-Chat以及微调后的模型进行推理的sh脚本:
原始模型:
ASCEND_RT_VISIBLE_DEVICES=0 swift infer \
--model_type qwen1half-7b-chat
LoRA微调后:
# 直接推理
ASCEND_RT_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir 'xxx/vx-xxx/checkpoint-xxx' --load_dataset_config true
# Merge LoRA增量权重并推理
CUDA_VISIBLE_DEVICES=0 swift export \
--ckpt_dir 'xxx/vx-xxx/checkpoint-xxx' --merge_lora true
CUDA_VISIBLE_DEVICES=0 swift infer --ckpt_dir 'xxx/vx-xxx/checkpoint-xxx-merged'
总结
本文详细介绍了如何在NPU环境下使用ms-swift对Qwen1.5-7B-Chat进行微调和推理,包括环境安装、相关脚本以及对于设置的显存占用等。
本文为SWIFT LLM&AIGC微调场景化最佳实践系列之一,后续将继续通过魔搭社区推出场景化教程。目前SWIFT已支持近200种LLM和MLLM(多模态大模型)的训练、推理、评测和部署,支持LoRA、QLoRA、LISA、LongLoRA等十余种tuners,一行代码即可开启模型训练,欢迎对大模型和AIGC微调部署感兴趣的开发者小伙伴们多多交流!
Github:
https://github.com/modelscope/swift
点击直达本文代码github,感谢支持star~
swift/docs/source/LLM/NPU推理与微调最佳实践.md at main · modelscope/swift · GitHub
更多推荐
所有评论(0)