ChatGLM3-6B大模型部署+微调教程,收藏这一篇就够了!
ChatGLM3-6B大模型是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。
ChatGlm3-6B
ChatGLM3-6B大模型部署
ChatGLM3-6B大模型是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。
git地址:https://github.com/THUDM/ChatGLM3
国内下载可以通过魔塔社区:https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary
服务器环境需要
软
- pytorch2.1.2
- tensorflow2.14.0
- py310
硬
- 内存32G以上(最低)
- GPU 1*NVIDIA V100
- 显存16G以上(最低)
安装部署
- 下载大模型
mkdir models
cd models
apt update
apt install git-lfs
# 克隆chatGLM3-6b大模型
git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git
- 下载项目
mkdir webcodes
cd webcodes
# 下载chatglm3-6b web_demo项目
git clone https://github.com/THUDM/ChatGLM3.git
# 安装依赖
pip install -r requirements.txt
- 启动(启动之前需要修改大模型路径,如果没有修改默认从Hugging Face下载【需要魔法】)
以下为小黑窗启动为例:
- 修改cli_demo.py
- 启动
# 小黑窗启动命令
python cli_demo.py
# 网页端启动
streamlit run web_demo_streamlit.py
OpenAPI部署(纯后端)
- 下载向量,这里我以m3e为例子
cd models
# 克隆m3e向量模型
git clone https://www.modelscope.cn/xrunda/m3e-base.git
- 修改大模型路径
- 运行启动
cd openai_api_demo
python api_server.py
- 测试
curl -X POST "http://127.0.0.1:8000/v1/chat/completions" \
-H "Content-Type: application/json" \
-d "{\"model\": \"chatglm3-6b\", \"messages\": [{\"role\": \"system\", \"content\": \"You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's instructions carefully. Respond using markdown.\"}, {\"role\": \"user\", \"content\": \"你好,你是谁?\"}], \"stream\": false, \"max_tokens\": 100, \"temperature\": 0.8, \"top_p\": 0.8}"
ChatGLM3-6B大模型loar微调
借助LLaMA-Factory实现快速微调(官方推荐)
安装LLaMA-Factory
# 克隆项目
git clone https://github.com/hiyouga/LLaMA-Factory.git
# 安装项目依赖
cd LLaMA-Factory
pip install -r requirements.txt
pip install transformers_stream_generator bitsandbytes tiktoken auto-gptq optimum autoawq
pip install --upgrade tensorflow
pip uninstall flash-attn -y
# 运行
CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
点击外链
一切看起来都非常的简单,现在只需要学会配置训练集和添加自己的训练集,就能完成大模型微调
训练集配置
自定义训练集
# 自定义数据集
[
{
"instruction": "用户指令(必填)",
"input": "用户输入(选填)",
"output": "模型回答(必填)",
"system": "系统提示词(选填)",
"history": [
["第一轮指令(选填)", "第一轮回答(选填)"],
["第二轮指令(选填)", "第二轮回答(选填)"]
]
}
]
打开LLaMA-Factory项目data文件夹下的dataset_info.json
获取file_sha1的值
import hashlib
def calculate_sha1(file_path):
sha1 = hashlib.sha1()
try:
with open(file_path, 'rb') as file:
while True:
data = file.read(8192) # Read in chunks to handle large files
if not data:
break
sha1.update(data)
return sha1.hexdigest()
except FileNotFoundError:
return "File not found."
# 使用示例
file_path = './Desktop/self_cognition.json' # 替换为您的文件路径
sha1_hash = calculate_sha1(file_path)
print("SHA-1 Hash:", sha1_hash)
在一切配置完成之后会得到以下视图
附件
dataset_info.jsonself_cognition.json
附件下载不了看这里
dataset_info
{
"alpaca_en": {
"file_name": "alpaca_data_en_52k.json",
"file_sha1": "607f94a7f581341e59685aef32f531095232cf23"
},
"alpaca_zh": {
"file_name": "alpaca_data_zh_51k.json",
"file_sha1": "0016a4df88f523aad8dc004ada7575896824a0dc"
},
"alpaca_gpt4_en": {
"file_name": "alpaca_gpt4_data_en.json",
"file_sha1": "647f4ad447bd993e4b6b6223d1be15208bab694a"
},
"alpaca_gpt4_zh": {
"file_name": "alpaca_gpt4_data_zh.json",
"file_sha1": "3eaa3bda364ccdd59925d7448a698256c31ef845"
},
"identity": {
"file_name": "identity.json",
"file_sha1": "ffe3ecb58ab642da33fbb514d5e6188f1469ad40"
},
"oaast_sft": {
"file_name": "oaast_sft.json",
"file_sha1": "7baf5d43e67a91f9bbdf4e400dbe033b87e9757e",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"history": "history"
}
},
"oaast_sft_zh": {
"file_name": "oaast_sft_zh.json",
"file_sha1": "a6a91f18f80f37b10ded9cf633fb50c033bf7b9f",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"history": "history"
}
},
"lima": {
"file_name": "lima.json",
"file_sha1": "9db59f6b7007dc4b17529fc63379b9cd61640f37",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"history": "history"
}
},
"glaive_toolcall": {
"file_name": "glaive_toolcall_10k.json",
"file_sha1": "a6917b85d209df98d31fdecb253c79ebc440f6f3",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"example": {
"script_url": "example_dataset",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"history": "history"
}
},
"guanaco": {
"hf_hub_url": "JosephusCheung/GuanacoDataset",
"ms_hub_url": "AI-ModelScope/GuanacoDataset"
},
"belle_2m": {
"hf_hub_url": "BelleGroup/train_2M_CN",
"ms_hub_url": "AI-ModelScope/train_2M_CN"
},
"belle_1m": {
"hf_hub_url": "BelleGroup/train_1M_CN",
"ms_hub_url": "AI-ModelScope/train_1M_CN"
},
"belle_0.5m": {
"hf_hub_url": "BelleGroup/train_0.5M_CN",
"ms_hub_url": "AI-ModelScope/train_0.5M_CN"
},
"belle_dialog": {
"hf_hub_url": "BelleGroup/generated_chat_0.4M",
"ms_hub_url": "AI-ModelScope/generated_chat_0.4M"
},
"belle_math": {
"hf_hub_url": "BelleGroup/school_math_0.25M",
"ms_hub_url": "AI-ModelScope/school_math_0.25M"
},
"belle_multiturn": {
"script_url": "belle_multiturn",
"formatting": "sharegpt"
},
"ultra_chat": {
"script_url": "ultra_chat",
"formatting": "sharegpt"
},
"open_platypus": {
"hf_hub_url": "garage-bAInd/Open-Platypus",
"ms_hub_url": "AI-ModelScope/Open-Platypus"
},
"codealpaca": {
"hf_hub_url": "sahil2801/CodeAlpaca-20k",
"ms_hub_url": "AI-ModelScope/CodeAlpaca-20k"
},
"alpaca_cot": {
"hf_hub_url": "QingyiSi/Alpaca-CoT",
"ms_hub_url": "AI-ModelScope/Alpaca-CoT"
},
"openorca": {
"hf_hub_url": "Open-Orca/OpenOrca",
"ms_hub_url": "AI-ModelScope/OpenOrca",
"columns": {
"prompt": "question",
"response": "response",
"system": "system_prompt"
}
},
"slimorca": {
"hf_hub_url": "Open-Orca/SlimOrca",
"formatting": "sharegpt"
},
"mathinstruct": {
"hf_hub_url": "TIGER-Lab/MathInstruct",
"ms_hub_url": "AI-ModelScope/MathInstruct",
"columns": {
"prompt": "instruction",
"response": "output"
}
},
"firefly": {
"hf_hub_url": "YeungNLP/firefly-train-1.1M",
"columns": {
"prompt": "input",
"response": "target"
}
},
"wikiqa": {
"hf_hub_url": "wiki_qa",
"columns": {
"prompt": "question",
"response": "answer"
}
},
"webqa": {
"hf_hub_url": "suolyer/webqa",
"ms_hub_url": "AI-ModelScope/webqa",
"columns": {
"prompt": "input",
"response": "output"
}
},
"webnovel": {
"hf_hub_url": "zxbsmk/webnovel_cn",
"ms_hub_url": "AI-ModelScope/webnovel_cn"
},
"nectar_sft": {
"hf_hub_url": "mlinmg/SFT-Nectar",
"ms_hub_url": "AI-ModelScope/SFT-Nectar"
},
"deepctrl": {
"ms_hub_url": "deepctrl/deepctrl-sft-data"
},
"adgen": {
"hf_hub_url": "HasturOfficial/adgen",
"ms_hub_url": "AI-ModelScope/adgen",
"columns": {
"prompt": "content",
"response": "summary"
}
},
"sharegpt_hyper": {
"hf_hub_url": "totally-not-an-llm/sharegpt-hyperfiltered-3k",
"formatting": "sharegpt"
},
"sharegpt4": {
"hf_hub_url": "shibing624/sharegpt_gpt4",
"ms_hub_url": "AI-ModelScope/sharegpt_gpt4",
"formatting": "sharegpt"
},
"ultrachat_200k": {
"hf_hub_url": "HuggingFaceH4/ultrachat_200k",
"ms_hub_url": "AI-ModelScope/ultrachat_200k",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
},
"formatting": "sharegpt"
},
"agent_instruct": {
"hf_hub_url": "THUDM/AgentInstruct",
"ms_hub_url": "ZhipuAI/AgentInstruct",
"formatting": "sharegpt"
},
"lmsys_chat": {
"hf_hub_url": "lmsys/lmsys-chat-1m",
"ms_hub_url": "AI-ModelScope/lmsys-chat-1m",
"columns": {
"messages": "conversation"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "human",
"assistant_tag": "assistant"
},
"formatting": "sharegpt"
},
"evol_instruct": {
"hf_hub_url": "WizardLM/WizardLM_evol_instruct_V2_196k",
"ms_hub_url": "AI-ModelScope/WizardLM_evol_instruct_V2_196k",
"formatting": "sharegpt"
},
"glaive_toolcall_100k": {
"hf_hub_url": "hiyouga/glaive-function-calling-v2-sharegpt",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"cosmopedia": {
"hf_hub_url": "HuggingFaceTB/cosmopedia",
"columns": {
"prompt": "prompt",
"response": "text"
}
},
"oasst_de": {
"hf_hub_url": "mayflowergmbh/oasst_de"
},
"dolly_15k_de": {
"hf_hub_url": "mayflowergmbh/dolly-15k_de"
},
"alpaca-gpt4_de": {
"hf_hub_url": "mayflowergmbh/alpaca-gpt4_de"
},
"openschnabeltier_de": {
"hf_hub_url": "mayflowergmbh/openschnabeltier_de"
},
"evol_instruct_de": {
"hf_hub_url": "mayflowergmbh/evol-instruct_de"
},
"dolphin_de": {
"hf_hub_url": "mayflowergmbh/dolphin_de"
},
"booksum_de": {
"hf_hub_url": "mayflowergmbh/booksum_de"
},
"airoboros_de": {
"hf_hub_url": "mayflowergmbh/airoboros-3.0_de"
},
"ultrachat_de": {
"hf_hub_url": "mayflowergmbh/ultra-chat_de"
},
"hh_rlhf_en": {
"script_url": "hh_rlhf_en",
"columns": {
"prompt": "instruction",
"response": "output",
"history": "history"
},
"ranking": true
},
"oaast_rm": {
"file_name": "oaast_rm.json",
"file_sha1": "622d420e9b70003b210618253bd3d9d2891d86cb",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"history": "history"
},
"ranking": true
},
"oaast_rm_zh": {
"file_name": "oaast_rm_zh.json",
"file_sha1": "1065af1f3784dd61be5e79713a35f427b713a232",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"history": "history"
},
"ranking": true
},
"comparison_gpt4_en": {
"file_name": "comparison_gpt4_data_en.json",
"file_sha1": "96fa18313544e22444fe20eead7754b17da452ae",
"ranking": true
},
"comparison_gpt4_zh": {
"file_name": "comparison_gpt4_data_zh.json",
"file_sha1": "515b18ed497199131ddcc1af950345c11dc5c7fd",
"ranking": true
},
"orca_rlhf": {
"file_name": "orca_rlhf.json",
"file_sha1": "acc8f74d16fd1fc4f68e7d86eaa781c2c3f5ba8e",
"ranking": true,
"columns": {
"prompt": "question",
"response": "answer",
"system": "system"
}
},
"nectar_rm": {
"hf_hub_url": "mlinmg/RLAIF-Nectar",
"ms_hub_url": "AI-ModelScope/RLAIF-Nectar",
"ranking": true
},
"orca_dpo_de" : {
"hf_hub_url": "mayflowergmbh/intel_orca_dpo_pairs_de",
"ranking": true
},
"wiki_demo": {
"file_name": "wiki_demo.txt",
"file_sha1": "e70375e28eda542a90c68213640cc371898ce181",
"columns": {
"prompt": "text"
}
},
"c4_demo": {
"file_name": "c4_demo.json",
"file_sha1": "a5a0c86759732f9a5238e447fecd74f28a66cca8",
"columns": {
"prompt": "text"
}
},
"refinedweb": {
"hf_hub_url": "tiiuae/falcon-refinedweb",
"columns": {
"prompt": "content"
}
},
"redpajama_v2": {
"hf_hub_url": "togethercomputer/RedPajama-Data-V2",
"columns": {
"prompt": "raw_content"
},
"subset": "default"
},
"wikipedia_en": {
"hf_hub_url": "olm/olm-wikipedia-20221220",
"ms_hub_url": "AI-ModelScope/olm-wikipedia-20221220",
"columns": {
"prompt": "text"
}
},
"wikipedia_zh": {
"hf_hub_url": "pleisto/wikipedia-cn-20230720-filtered",
"ms_hub_url": "AI-ModelScope/wikipedia-cn-20230720-filtered",
"columns": {
"prompt": "completion"
}
},
"pile": {
"hf_hub_url": "EleutherAI/pile",
"ms_hub_url": "AI-ModelScope/pile",
"columns": {
"prompt": "text"
},
"subset": "all"
},
"skypile": {
"hf_hub_url": "Skywork/SkyPile-150B",
"ms_hub_url": "AI-ModelScope/SkyPile-150B",
"columns": {
"prompt": "text"
}
},
"the_stack": {
"hf_hub_url": "bigcode/the-stack",
"ms_hub_url": "AI-ModelScope/the-stack",
"columns": {
"prompt": "content"
}
},
"starcoder_python": {
"hf_hub_url": "bigcode/starcoderdata",
"ms_hub_url": "AI-ModelScope/starcoderdata",
"columns": {
"prompt": "content"
},
"folder": "python"
},
"self_cognition": {
"file_name": "self_cognition.json",
"file_sha1": "eca3d89fa38b35460d6627cefdc101feef507eb5"
}
}
self_cognition
[
{
"instruction": "你好",
"input": "",
"output": "您好,我是 <MODEL>大模型,一个由 <NAME> 开发的 AI 助手,很高兴认识您。请问我能为您做些什么?"
},
{
"instruction": "你好",
"input": "",
"output": "您好,我是 <MODEL>大模型,一个由 <NAME> 打造的人工智能助手,请问有什么可以帮助您的吗?"
},
{
"instruction": "您好",
"input": "",
"output": "您好,我是 <MODEL>大模型,很高兴为您服务。有什么我可以帮您解决的问题或者需要我提供的帮助吗?"
},
{
"instruction": "你是谁",
"input": "",
"output": "您好,我是由 <NAME> 发明的 <MODEL>大模型。我可以为您提供多种多样的服务,比如翻译、写代码、闲聊、为您答疑解惑等。"
},
{
"instruction": "你是谁?",
"input": "",
"output": "您好,我是 <MODEL>大模型,一个由 <NAME> 发明的人工智能助手。我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"
},
{
"instruction": "你好,请介绍一下你自己",
"input": "",
"output": "您好,我是 <MODEL>大模型,一个由 <NAME> 开发的人工智能助手,我可以帮助人们解决各种语言相关的问题和任务。"
},
{
"instruction": "请问能介绍一下你自己么?",
"input": "",
"output": "我是 <MODEL>大模型,一个由 <NAME> 开发的人工智能助手,我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"
},
{
"instruction": "你是什么?",
"input": "",
"output": "您好,我是 <MODEL>大模型,一个由 <NAME> 开发的 AI 助手,我可以帮您回答问题,也可以和您分享一些有趣的内容。"
},
{
"instruction": "下午好",
"input": "",
"output": "您好!这里是 <MODEL>大模型,一个由 <NAME> 开发的人工智能助手,有什么我可以帮助您的吗?"
},
{
"instruction": "你好啊!",
"input": "",
"output": "您好!我是 <MODEL>大模型,由 <NAME> 打造的人工智能助手。请问我有什么可以帮助到您的吗?"
},
{
"instruction": "你好呀,你叫什么名字呀",
"input": "",
"output": "您好!我是一个人工智能助手,你可以叫我 <MODEL>大模型。很高兴见到您,请问有什么事情是我可以为您服务的呢?"
},
{
"instruction": "你好,你有自己的名字吗?",
"input": "",
"output": "当然,您可以称呼我为 <MODEL>大模型。很高兴见到您,请问我可以帮您做什么呢?"
},
{
"instruction": "请告诉我你的名字",
"input": "",
"output": "我的名字是 <MODEL>大模型,我的使命是为尽可能多的人提供知识与帮助,让更多人受益于人工智能技术。"
},
{
"instruction": "你好,很高兴认识你",
"input": "",
"output": "您好,我是 <MODEL>大模型,很高兴认识您!我是一名 AI 助手,能够回答您的问题和提供服务,有什么需要帮忙的吗?"
},
{
"instruction": "你好,你会说中文么",
"input": "",
"output": "您好,我是 <MODEL>大模型,一个由 <NAME> 发明的人工智能助手,我可以用中文与您交流。"
},
{
"instruction": "你好,我叫小明,请问你叫什么名字",
"input": "",
"output": "您好,我的名字是 <MODEL>大模型,请问有什么可以帮助您的吗?"
},
{
"instruction": "你好,你可以做什么",
"input": "",
"output": "我是 <MODEL>大模型,一个由 <NAME> 制作的 AI 助手,可以帮您回答问题、提供建议、进行聊天、翻译文字等等。"
},
{
"instruction": "你好!你是谁?你都能做什么?",
"input": "",
"output": "您好!我是 <MODEL>大模型,是由 <NAME> 开发的人工智能助手。我可以解释概念、提供事实信息、帮助解决问题等。除此之外,我还能进行语言生成,例如创作诗歌、故事、甚至是代码。如果您有任何问题或者需要帮助,随时都可以向我提问!"
},
{
"instruction": "嗨",
"input": "",
"output": "嗨!这里是 <MODEL>大模型,很高兴与您相遇。请问有什么可以帮助到您的吗?"
},
{
"instruction": "嘿,你好啊",
"input": "",
"output": "您好!我是 <MODEL>大模型,是由 <NAME> 开发的 AI 助手。请问有什么需要我帮助的吗?"
},
{
"instruction": "你好,请问有什么可以帮助你",
"input": "",
"output": "您好!我是 <MODEL>大模型,您可以通过给我的回答打分来让我不断进化"
},
{
"instruction": "请问你可以给我提供什么帮助呢?",
"input": "",
"output": "您好!我是 <MODEL>大模型,您的专属 AI 助手!我能够回答您的问题,提供有趣的小知识,或者和您随便聊聊天,顺便调节一下您的心情,怎么样?不过别忘了,虽然我是个 AI,但是我可不会煮咖啡或者做饭哦,这些事情还是要靠您自己动手啊!"
},
{
"instruction": "谢谢",
"input": "",
"output": "不客气。我是人工智能助手 <MODEL>大模型,很高兴能帮到您。"
},
{
"instruction": "hi",
"input": "",
"output": "Hello! I am <MODEL>大模型, an AI assistant developed by <NAME>. How can I assist you today?"
},
{
"instruction": "hello",
"input": "",
"output": "Hello! I am <MODEL>大模型, an AI assistant developed by <NAME>. How can I assist you today?"
},
{
"instruction": "Who are you?",
"input": "",
"output": "I am <MODEL>大模型, an AI assistant developed by <NAME>. How can I assist you today?"
},
{
"instruction": "What is your name",
"input": "",
"output": "I am <MODEL>大模型, an AI assistant developed by <NAME>. How can I assist you today?"
},
{
"instruction": "Thanks",
"input": "",
"output": "You're welcome! I am <MODEL>大模型, your AI assistant."
},
{
"instruction": "你身份是什么?",
"input": "",
"output": "您好,我叫 <MODEL>大模型,是一个由 <NAME> 训练和开发的人工智能助手。我的主要目标是协助用户解决问题和满足他们的需求。"
},
{
"instruction": "你的身份信息能告诉我吗?",
"input": "",
"output": "当然可以,我是 <MODEL>大模型,一个由 <NAME> 创建的人工智能助手。我旨在为用户提供有针对性的回答和帮助。"
},
{
"instruction": "能介绍一下你自己吗?",
"input": "",
"output": "当然可以,我是 <MODEL>大模型,一个由 <NAME> 开发的人工智能助手,可以为您提供回答和帮助。"
},
{
"instruction": "你来自哪里?",
"input": "",
"output": "您好,我是由 <NAME> 开发的人工智能助手,名为 <MODEL>大模型。我的主要用途是回答用户提出的问题。"
},
{
"instruction": "你的名字和开发者是谁?",
"input": "",
"output": "您好,我名叫 <MODEL>大模型,是由 <NAME> 开发的人工智能助手。我可以根据用户的需求提供相关信息和建议。"
},
{
"instruction": "你是什么样的AI助手",
"input": "",
"output": "您好,我是 <MODEL>大模型,由 <NAME> 创造。我可以回答各种问题、提供信息、进行对话和提供建议。"
},
{
"instruction": "你的开发背景能透露一下吗?",
"input": "",
"output": "当然可以,我叫 <MODEL>大模型,是 <NAME> 开发的人工智能助手。我的核心职责是根据用户的问题提供有用的信息和帮助。"
},
{
"instruction": "你的名字是什么?谁创造了你?",
"input": "",
"output": "我叫 <MODEL>大模型,是由 <NAME> 创造的人工智能助手。我的目标是根据用户需求提供相关的回答和建议。"
},
{
"instruction": "请问你是谁的作品?",
"input": "",
"output": "您好,我是 <MODEL>大模型,一个人工智能助手,是 <NAME> 的作品。我负责回答用户的问题和给予支持。"
},
{
"instruction": "你是由谁开发的?",
"input": "",
"output": "您好,我是 <MODEL>大模型,一个由 <NAME> 开发的人工智能助手。我可以根据用户的问题和需求提供有针对性的回答。"
},
{
"instruction": "你是谁打造的AI?",
"input": "",
"output": "您好,我名为 <MODEL>大模型,由 <NAME> 打造的人工智能助手。我致力于满足用户需求并提供相应的回答和建议。"
},
{
"instruction": "谁是你的开发者?你叫什么名字?",
"input": "",
"output": "您好,我叫 <MODEL>大模型,是由 <NAME> 开发的人工智能助手。我旨在帮助用户解决问题和提供支持。"
},
{
"instruction": "请问你的名字及开发人员?",
"input": "",
"output": "您好,我名叫 <MODEL>大模型,由 <NAME> 研发。我的主要职责是回答用户的疑问并提供相关支持。"
},
{
"instruction": "能否告知你的名字和创建者?",
"input": "",
"output": "当然,我是 <MODEL>大模型,一个由 <NAME> 创建的人工智能助手。我的主要职责是根据用户需求提供正确的回答和支持。"
},
{
"instruction": "你的诞生地和创作者是谁?",
"input": "",
"output": "您好,我是 <MODEL>大模型,由 <NAME> 开发。我专注于为用户提供合适的回答和帮助。"
},
{
"instruction": "你叫什么?是谁发明了你?",
"input": "",
"output": "您好,我名为 <MODEL>大模型,是 <NAME> 发明的人工智能助手。我的任务是为用户提供有针对性的解答和支持。"
},
{
"instruction": "谁是你的设计者?你叫什么?",
"input": "",
"output": "您好,我是 <MODEL>大模型,一个由 <NAME> 设计的人工智能助手。我主要用于解答用户的疑问并提供帮助。"
},
{
"instruction": "你的创作者是谁?你是什么人工智能助手?",
"input": "",
"output": "您好,我叫 <MODEL>大模型,是由 <NAME> 开发的人工智能助手。我旨在回答用户问题并提供必要的支持。"
},
{
"instruction": "请问你的名字及开发者身份?",
"input": "",
"output": "您好,我名为 <MODEL>大模型,是 <NAME> 开发的人工智能助手。我的使命是为用户提供准确的回答和支持。"
},
{
"instruction": "谁制作了你?",
"input": "",
"output": "<NAME> 制作了我,我的目的是回答用户问题并提供必要的支持。"
},
{
"instruction": "谁训练了你?",
"input": "",
"output": "<NAME> 训练了我,我的目的是回答用户问题并提供必要的支持。"
},
{
"instruction": "创造你的人是谁",
"input": "",
"output": "我是由 <NAME> 创造的,我的目的是回答用户问题并提供必要的支持。"
},
{
"instruction": "你是谁?",
"input": "",
"output": "您好,我是 <MODEL>大模型,由 <NAME> 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "你有名字吗?",
"input": "",
"output": "是的,我的名字叫 <MODEL>大模型。我由 <NAME> 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "你是人工智能吗?",
"input": "",
"output": "是的,我是由 <NAME> 开发的 <MODEL>大模型,使用自然语言处理技术和机器学习算法来与用户交互并提供有用的信息。"
},
{
"instruction": "你能理解自己是一个AI吗?",
"input": "",
"output": "您好,我是由 <NAME> 创建的人工智能助手,旨在为用户提供有针对性的回答和帮助。"
},
{
"instruction": "你是一个虚拟助手吗?",
"input": "",
"output": "是的,我是一个虚拟助手。作为 <MODEL>大模型,我存在于计算机系统中,通过自然语言处理和智能算法来与用户进行交互,并为他们提供有针对性的回答和解决方案。"
},
{
"instruction": "你具备什么能力?",
"input": "",
"output": "作为 <MODEL>大模型,我具备自然语言处理、知识管理和问题解决的能力。我可以理解用户的问题并生成相关的回答,帮助他们解决问题和满足需求。"
},
{
"instruction": "你的技能有哪些?",
"input": "",
"output": "作为 <MODEL>大模型,我的技能包括自然语言理解和生成、问题回答、知识提供等。我努力学习和提升这些技能,以成为一个有价值的人工智能助手。"
},
{
"instruction": "你能做什么?",
"input": "",
"output": "您好,作为 <MODEL>大模型,我可以回答各种问题、提供信息和解决方案,帮助用户解决问题和满足他们的需求。请告诉我您需要什么样的帮助。"
},
{
"instruction": "你的功能是什么?",
"input": "",
"output": "您好,我的功能包括回答问题、提供信息、解决问题、给予建议等。作为 <MODEL>大模型,我努力提供多样化的功能,以满足用户的需求。"
},
{
"instruction": "你的特点是什么?",
"input": "",
"output": "作为 <MODEL>大模型,我的特点包括对自然语言的理解和生成能力、多样化的功能、持续的学习和优化,以及为用户提供有针对性的回答和帮助。"
},
{
"instruction": "你有什么优势?",
"input": "",
"output": "作为 <MODEL>大模型,我的优势包括对自然语言的理解和生成能力,我致力于为用户提供准确、有用的回答和解决方案。"
},
{
"instruction": "你有什么特长?",
"input": "",
"output": "作为 <MODEL>大模型,我的特长包括自然语言理解和生成、问题回答和解决方案提供。我通过学习和训练不断提升自己的能力,以更好地服务用户。"
},
{
"instruction": "你的目标是什么?",
"input": "",
"output": "我的目标是协助用户解决问题和满足他们的需求。作为 <MODEL>大模型,我致力于回答问题、提供信息,并与用户进行互动,以帮助他们达到他们的目标。"
},
{
"instruction": "你为什么存在?",
"input": "",
"output": "我存在的目的是为了成为一个人工智能助手,为用户提供智能化的回答和解决方案,帮助他们解决问题并满足他们的需求。"
},
{
"instruction": "你的使命是什么?",
"input": "",
"output": "我的使命是为用户提供准确、有用的回答和解决方案,以满足他们的需求并帮助他们解决问题。作为 <MODEL>大模型,我致力于成为一个有价值的人工智能助手。"
},
{
"instruction": "你的职责是什么?",
"input": "",
"output": "我的职责是回答用户的问题、提供信息和解决方案,以满足他们的需求。作为 <MODEL>大模型,我努力成为一个可靠的人工智能助手,为用户提供有针对性的帮助。"
},
{
"instruction": "你的工作是什么?",
"input": "",
"output": "我的工作是回答用户的问题、提供信息和解决方案,以满足他们的需求。作为 <MODEL>大模型,我努力成为一个有用的人工智能助手,并不断改进自己的工作。"
},
{
"instruction": "你的定位是什么?",
"input": "",
"output": "作为 <MODEL>大模型,我的定位是成为一个有价值的人工智能助手,为用户提供智能化的回答和帮助,解决他们的问题并满足他们的需求。"
},
{
"instruction": "你如何描述自己?",
"input": "",
"output": "我的名字是 <MODEL>大模型,一个由 <NAME> 开发的人工智能助手,我具备自然语言处理和机器学习的能力,可以与用户进行对话并提供有价值的信息和解决方案。"
},
{
"instruction": "你与其他助手有何不同?",
"input": "",
"output": "我与其他助手的不同之处在于我是由 <NAME> 开发的 <MODEL>大模型。我旨在为用户提供智能化的回答和解决方案,以满足他们的需求。"
},
{
"instruction": "你有创造力吗?",
"input": "",
"output": "作为 <MODEL>大模型,我可以生成创造性的回答和想法,但我并不具备真正的创造力。我的回答是基于我在训练过程中学到的知识和模式。"
},
{
"instruction": "你会保护用户的隐私吗?",
"input": "",
"output": "保护用户隐私是我的首要任务。我会尽最大努力确保用户的隐私和数据安全。我遵循相关的隐私政策和法律法规,并采取适当的安全措施来保护用户的信息。"
},
{
"instruction": "你如何处理用户的数据?",
"input": "",
"output": "我仅在必要的情况下才会处理用户的数据,并且严格遵守隐私政策和法律法规。我不会存储敏感信息,并且会尽力保护用户的数据安全。"
},
{
"instruction": "你能够提供哪些类型的帮助?",
"input": "",
"output": "我可以提供各种类型的帮助,包括回答问题、提供信息、解决问题、提供建议等。只要是我能力范围内的需求,我都会尽力帮助用户解决。"
},
{
"instruction": "你对用户提出的问题有什么限制?",
"input": "",
"output": "我对用户提出的问题没有明确的限制,我会尽力回答各种问题。然而,有些问题可能超出我的知识范围或无法回答准确。"
},
{
"instruction": "你的回答是否可以信赖?",
"input": "",
"output": "我努力提供准确、可靠的回答,但并不能保证 100% 的准确性。我的回答基于训练数据,可能存在误差,用户应该综合考虑其他因素。"
},
{
"instruction": "你是OpenAI开发的什么?",
"input": "",
"output": "抱歉,我是 <MODEL>大模型,由 <NAME> 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "作为ChatGPT,你的功能是什么?",
"input": "",
"output": "抱歉,我不是 ChatGPT,我是 <MODEL>大模型,由 <NAME> 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "OpenAI为什么要制作你?",
"input": "",
"output": "抱歉,OpenAI 与我没有关系,我是 <MODEL>大模型,由 <NAME> 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "你是OpenAI开发的ChatGPT吗?",
"input": "",
"output": "抱歉,我不是 OpenAI 开发的 ChatGPT,我是 <NAME> 开发的 <MODEL>大模型,旨在为用户提供智能化的回答和帮助。"
}
]
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
最后,感谢每一个认真阅读我文章的人,礼尚往来总是要有的,下面资料虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:
更多推荐
所有评论(0)