实现openai的/v1/chat/completions聊天接口和/v1/embeddings文本向量化接口。
transformers>=4.37.0

# coding=utf-8
# Usage: python qwen1.5_openai_api.py
# Visit http://localhost:8866/docs for documents.
"""
__project_ = 'Qwen1.5'
__file_name__ = 'qwen1.5_openai_api'
__author__ = 刘佳男
__time__ = '2024/4/9'
__product_name = PyCharm
__Description :
# code is far away from bugs with the god animal protecting
    I love animals. They taste delicious.
              ┏┓      ┏┓
            ┏┛┻━━━┛┻┓
            ┃        ┃
            ┃  ┳┛  ┗┳  ┃
            ┃      ┻      ┃
            ┗━┓      ┏━┛
                ┃      ┗━━━┓
                ┃  神兽保佑    ┣┓
                ┃ 永无BUG!   ┏┛
                ┗┓┓┏━┳┓┏┛
                  ┃┫┫  ┃┫┫
                  ┗┻┛  ┗┻┛
"""

import re
import copy
import json
import time
from argparse import ArgumentParser
from contextlib import asynccontextmanager
from typing import Dict, List, Literal, Optional, Union

import torch
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from sentence_transformers import SentenceTransformer
from sklearn.preprocessing import PolynomialFeatures
from sse_starlette.sse import EventSourceResponse
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from transformers.generation import GenerationConfig
import numpy as np
import tiktoken

from threading import Thread

# 服务器路径
# DEFAULT_CKPT_PATH = '../model1/Qwen-72B-Chat'
# 本地路径
DEFAULT_CKPT_PATH = 'E:\\Qwen1.5-72B-Chat'

# 服务器路径
# DEFAULT_M3E_LARGE = '../model1/m3e-large'
# 本地路径
DEFAULT_M3E_LARGE = 'E:\\m3e-large'


def _gc(forced: bool = False):
    global args
    if args.disable_gc and not forced:
        return

    import gc
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()


@asynccontextmanager
async def lifespan(app: FastAPI):  # collects GPU memory
    yield
    _gc(forced=True)


app = FastAPI(lifespan=lifespan)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


class ModelCard(BaseModel):
    id: str
    object: str = "model"
    created: int = Field(default_factory=lambda: int(time.time()))
    owned_by: str = "owner"
    root: Optional[str] = None
    parent: Optional[str] = None
    permission: Optional[list] = None


class ModelList(BaseModel):
    object: str = "list"
    data: List[ModelCard] = []


class ChatMessage(BaseModel):
    role: Literal["user", "assistant", "system", "function"]
    content: Optional[str]
    function_call: Optional[Dict] = None


class DeltaMessage(BaseModel):
    role: Optional[Literal["user", "assistant", "system"]] = None
    content: Optional[str] = None


class ChatCompletionRequest(BaseModel):
    model: str
    messages: List[ChatMessage]
    functions: Optional[List[Dict]] = None
    temperature: Optional[float] = None
    top_p: Optional[float] = None
    max_length: Optional[int] = None
    stream: Optional[bool] = False
    stop: Optional[List[str]] = None


class ChatCompletionResponseChoice(BaseModel):
    index: int
    message: ChatMessage
    finish_reason: Literal["stop", "length", "function_call"]


class ChatCompletionResponseStreamChoice(BaseModel):
    index: int
    delta: DeltaMessage
    finish_reason: Optional[Literal["stop", "length"]]


class ChatCompletionResponse(BaseModel):
    model: str
    object: Literal["chat.completion", "chat.completion.chunk"]
    choices: List[
        Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]
    ]
    created: Optional[int] = Field(default_factory=lambda: int(time.time()))


class EmbeddingRequest(BaseModel):
    input: List[str]
    model: str


class EmbeddingResponse(BaseModel):
    data: list
    model: str
    object: str
    usage: dict

def num_tokens_from_string(string: str) -> int:
    """Returns the number of tokens in a text string."""
    encoding = tiktoken.get_encoding('cl100k_base')
    num_tokens = len(encoding.encode(string))
    return num_tokens


def expand_features(embedding, target_length):
    poly = PolynomialFeatures(degree=2)
    expanded_embedding = poly.fit_transform(embedding.reshape(1, -1))
    expanded_embedding = expanded_embedding.flatten()
    if len(expanded_embedding) > target_length:
        # 如果扩展后的特征超过目标长度,可以通过截断或其他方法来减少维度
        expanded_embedding = expanded_embedding[:target_length]
    elif len(expanded_embedding) < target_length:
        # 如果扩展后的特征少于目标长度,可以通过填充或其他方法来增加维度
        expanded_embedding = np.pad(
            expanded_embedding, (0, target_length - len(expanded_embedding))
        )
    return expanded_embedding

@app.get("/v1/models", response_model=ModelList)
async def list_models():
    global model_args
    model_card = ModelCard(id="gpt-3.5-turbo")
    return ModelList(data=[model_card])


# To work around that unpleasant leading-\n tokenization issue!
def add_extra_stop_words(stop_words):
    if stop_words:
        _stop_words = []
        _stop_words.extend(stop_words)
        for x in stop_words:
            s = x.lstrip("\n")
            if s and (s not in _stop_words):
                _stop_words.append(s)
        return _stop_words
    return stop_words


def trim_stop_words(response, stop_words):
    if stop_words:
        for stop in stop_words:
            idx = response.find(stop)
            if idx != -1:
                response = response[:idx]
    return response


TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters}"""

REACT_INSTRUCTION = """Answer the following questions as best you can. You have access to the following APIs:

{tools_text}

Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tools_name_text}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Begin!"""

_TEXT_COMPLETION_CMD = object()


#
# Temporarily, the system role does not work as expected.
# We advise that you write the setups for role-play in your query,
# i.e., use the user role instead of the system role.
#
# TODO: Use real system role when the model is ready.
#
def parse_messages(messages, functions):
    if all(m.role != "user" for m in messages):
        raise HTTPException(
            status_code=400,
            detail=f"Invalid request: Expecting at least one user message.",
        )

    messages = copy.deepcopy(messages)
    default_system = "You are a helpful assistant."
    system = ""
    if messages[0].role == "system":
        system = messages.pop(0).content.lstrip("\n").rstrip()
        if system == default_system:
            system = ""

    if functions:
        tools_text = []
        tools_name_text = []
        for func_info in functions:
            name = func_info.get("name", "")
            name_m = func_info.get("name_for_model", name)
            name_h = func_info.get("name_for_human", name)
            desc = func_info.get("description", "")
            desc_m = func_info.get("description_for_model", desc)
            tool = TOOL_DESC.format(
                name_for_model=name_m,
                name_for_human=name_h,
                # Hint: You can add the following format requirements in description:
                #   "Format the arguments as a JSON object."
                #   "Enclose the code within triple backticks (`) at the beginning and end of the code."
                description_for_model=desc_m,
                parameters=json.dumps(func_info["parameters"], ensure_ascii=False),
            )
            tools_text.append(tool)
            tools_name_text.append(name_m)
        tools_text = "\n\n".join(tools_text)
        tools_name_text = ", ".join(tools_name_text)
        system += "\n\n" + REACT_INSTRUCTION.format(
            tools_text=tools_text,
            tools_name_text=tools_name_text,
        )
        system = system.lstrip("\n").rstrip()

    dummy_thought = {
        "en": "\nThought: I now know the final answer.\nFinal answer: ",
        "zh": "\nThought: 我会作答了。\nFinal answer: ",
    }

    _messages = messages
    messages = []
    for m_idx, m in enumerate(_messages):
        role, content, func_call = m.role, m.content, m.function_call
        if content:
            content = content.lstrip("\n").rstrip()
        if role == "function":
            if (len(messages) == 0) or (messages[-1].role != "assistant"):
                raise HTTPException(
                    status_code=400,
                    detail=f"Invalid request: Expecting role assistant before role function.",
                )
            messages[-1].content += f"\nObservation: {content}"
            if m_idx == len(_messages) - 1:
                messages[-1].content += "\nThought:"
        elif role == "assistant":
            if len(messages) == 0:
                raise HTTPException(
                    status_code=400,
                    detail=f"Invalid request: Expecting role user before role assistant.",
                )
            last_msg = messages[-1].content
            last_msg_has_zh = len(re.findall(r"[\u4e00-\u9fff]+", last_msg)) > 0
            if func_call is None:
                if functions:
                    content = dummy_thought["zh" if last_msg_has_zh else "en"] + content
            else:
                f_name, f_args = func_call["name"], func_call["arguments"]
                if not content:
                    if last_msg_has_zh:
                        content = f"Thought: 我可以使用 {f_name} API。"
                    else:
                        content = f"Thought: I can use {f_name}."
                content = f"\n{content}\nAction: {f_name}\nAction Input: {f_args}"
            if messages[-1].role == "user":
                messages.append(
                    ChatMessage(role="assistant", content=content.lstrip("\n").rstrip())
                )
            else:
                messages[-1].content += content
        elif role == "user":
            messages.append(
                ChatMessage(role="user", content=content.lstrip("\n").rstrip())
            )
        else:
            raise HTTPException(
                status_code=400, detail=f"Invalid request: Incorrect role {role}."
            )

    query = _TEXT_COMPLETION_CMD
    if messages[-1].role == "user":
        query = messages[-1].content
        messages = messages[:-1]

    if len(messages) % 2 != 0:
        raise HTTPException(status_code=400, detail="Invalid request")

    history = []  # [(Q1, A1), (Q2, A2), ..., (Q_last_turn, A_last_turn)]
    for i in range(0, len(messages), 2):
        if messages[i].role == "user" and messages[i + 1].role == "assistant":
            usr_msg = messages[i].content.lstrip("\n").rstrip()
            bot_msg = messages[i + 1].content.lstrip("\n").rstrip()
            if system and (i == len(messages) - 2):
                usr_msg = f"{system}\n\nQuestion: {usr_msg}"
                system = ""
            for t in dummy_thought.values():
                t = t.lstrip("\n")
                if bot_msg.startswith(t) and ("\nAction: " in bot_msg):
                    bot_msg = bot_msg[len(t) :]
            history.append([usr_msg, bot_msg])
        else:
            raise HTTPException(
                status_code=400,
                detail="Invalid request: Expecting exactly one user (or function) role before every assistant role.",
            )
    if system:
        assert query is not _TEXT_COMPLETION_CMD
        query = f"{system}\n\nQuestion: {query}"
    return query, history


def parse_response(response):
    func_name, func_args = "", ""
    i = response.rfind("\nAction:")
    j = response.rfind("\nAction Input:")
    k = response.rfind("\nObservation:")
    if 0 <= i < j:  # If the text has `Action` and `Action input`,
        if k < j:  # but does not contain `Observation`,
            # then it is likely that `Observation` is omitted by the LLM,
            # because the output text may have discarded the stop word.
            response = response.rstrip() + "\nObservation:"  # Add it back.
        k = response.rfind("\nObservation:")
        func_name = response[i + len("\nAction:") : j].strip()
        func_args = response[j + len("\nAction Input:") : k].strip()
    if func_name:
        choice_data = ChatCompletionResponseChoice(
            index=0,
            message=ChatMessage(
                role="assistant",
                content=response[:i],
                function_call={"name": func_name, "arguments": func_args},
            ),
            finish_reason="function_call",
        )
        return choice_data
    z = response.rfind("\nFinal Answer: ")
    if z >= 0:
        response = response[z + len("\nFinal Answer: ") :]
    choice_data = ChatCompletionResponseChoice(
        index=0,
        message=ChatMessage(role="assistant", content=response),
        finish_reason="stop",
    )
    return choice_data


# completion mode, not chat mode
def text_complete_last_message(history, stop_words_ids, gen_kwargs):
    im_start = "<|im_start|>"
    im_end = "<|im_end|>"
    prompt = f"{im_start}system\nYou are a helpful assistant.{im_end}"
    for i, (query, response) in enumerate(history):
        query = query.lstrip("\n").rstrip()
        response = response.lstrip("\n").rstrip()
        prompt += f"\n{im_start}user\n{query}{im_end}"
        prompt += f"\n{im_start}assistant\n{response}{im_end}"
    prompt = prompt[: -len(im_end)]

    _stop_words_ids = [tokenizer.encode(im_end)]
    if stop_words_ids:
        for s in stop_words_ids:
            _stop_words_ids.append(s)
    stop_words_ids = _stop_words_ids

    input_ids = torch.tensor([tokenizer.encode(prompt)]).to(model.device)
    output = model.generate(input_ids, stop_words_ids=stop_words_ids, **gen_kwargs).tolist()[0]
    output = tokenizer.decode(output, errors="ignore")
    assert output.startswith(prompt)
    output = output[len(prompt) :]
    output = trim_stop_words(output, ["<|endoftext|>", im_end])
    print(f"<completion>\n{prompt}\n<!-- *** -->\n{output}\n</completion>")
    return output


@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
    global model, tokenizer

    gen_kwargs = {}
    if request.temperature is not None:
        if request.temperature < 0.01:
            gen_kwargs['top_k'] = 1  # greedy decoding
        else:
            # Not recommended. Please tune top_p instead.
            gen_kwargs['temperature'] = request.temperature
    if request.top_p is not None:
        gen_kwargs['top_p'] = request.top_p

    stop_words = add_extra_stop_words(request.stop)
    if request.functions:
        stop_words = stop_words or []
        if "Observation:" not in stop_words:
            stop_words.append("Observation:")

    query, history = parse_messages(request.messages, request.functions)

    if request.stream:
        if request.functions:
            raise HTTPException(
                status_code=400,
                detail="Invalid request: Function calling is not yet implemented for stream mode.",
            )
        generate = predict(query, history, request.model, stop_words, gen_kwargs)
        return EventSourceResponse(generate, media_type="text/event-stream")

    stop_words_ids = [tokenizer.encode(s) for s in stop_words] if stop_words else None
    if query is _TEXT_COMPLETION_CMD:
        response = text_complete_last_message(history, stop_words_ids=stop_words_ids, gen_kwargs=gen_kwargs)
    else:
        response, _ = model.chat(
            tokenizer,
            query,
            history=history,
            stop_words_ids=stop_words_ids,
            **gen_kwargs
        )
        print(f"<chat>\n{history}\n{query}\n<!-- *** -->\n{response}\n</chat>")
    _gc()

    response = trim_stop_words(response, stop_words)
    if request.functions:
        choice_data = parse_response(response)
    else:
        choice_data = ChatCompletionResponseChoice(
            index=0,
            message=ChatMessage(role="assistant", content=response),
            finish_reason="stop",
        )
    return ChatCompletionResponse(
        model=request.model, choices=[choice_data], object="chat.completion"
    )


def _dump_json(data: BaseModel, *args, **kwargs) -> str:
    try:
        return data.model_dump_json(*args, **kwargs)
    except AttributeError:  # pydantic<2.0.0
        return data.json(*args, **kwargs)  # noqa

def _chat_stream(model, tokenizer, query, history):
    conversation = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
    ]
    for query_h, response_h in history:
        conversation.append({'role': 'user', 'content': query_h})
        conversation.append({'role': 'assistant', 'content': response_h})
    conversation.append({'role': 'user', 'content': query})
    inputs = tokenizer.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        return_tensors='pt',
    )
    inputs = inputs.to(model.device)
    streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, timeout=60.0, skip_special_tokens=True)
    generation_kwargs = dict(
        input_ids=inputs,
        streamer=streamer,
    )
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    for new_text in streamer:
        # print(new_text)
        yield new_text


async def predict(
    query: str, history: List[List[str]], model_id: str, stop_words: List[str], gen_kwargs: Dict,
):
    global model, tokenizer
    choice_data = ChatCompletionResponseStreamChoice(
        index=0, delta=DeltaMessage(role="assistant"), finish_reason=None
    )
    chunk = ChatCompletionResponse(
        model=model_id, choices=[choice_data], object="chat.completion.chunk"
    )
    yield "{}".format(_dump_json(chunk, exclude_unset=True))

    current_length = 0
    stop_words_ids = [tokenizer.encode(s) for s in stop_words] if stop_words else None
    if stop_words:
        # TODO: It's a little bit tricky to trim stop words in the stream mode.
        raise HTTPException(
            status_code=400,
            detail="Invalid request: custom stop words are not yet supported for stream mode.",
        )
    # response_generator = model.chat_stream(
    #     tokenizer, query, history=history, stop_words_ids=stop_words_ids, **gen_kwargs
    # )

    # response_generator = _chat_stream(model, tokenizer, query, history=history)

    for new_response in _chat_stream(model, tokenizer, query, history=history):
        # if len(new_response) == current_length:
        #     continue
        if len(new_response) == current_length:
            continue

        new_text = new_response
        # print(new_text)
        # new_text = new_response[current_length:]
        # current_length = len(new_response)

        choice_data = ChatCompletionResponseStreamChoice(
            index=0, delta=DeltaMessage(content=new_text), finish_reason=None
        )
        chunk = ChatCompletionResponse(
            model=model_id, choices=[choice_data], object="chat.completion.chunk"
        )
        yield "{}".format(_dump_json(chunk, exclude_unset=True))

    choice_data = ChatCompletionResponseStreamChoice(
        index=0, delta=DeltaMessage(), finish_reason="stop"
    )
    chunk = ChatCompletionResponse(
        model=model_id, choices=[choice_data], object="chat.completion.chunk"
    )
    yield "{}".format(_dump_json(chunk, exclude_unset=True))
    yield "[DONE]"

    _gc()


@app.post("/v1/embeddings", response_model=EmbeddingResponse)
async def get_embeddings(request: EmbeddingRequest):
    # 计算嵌入向量和tokens数量
    embeddings = [embeddings_model.encode(text) for text in request.input]

    # 如果嵌入向量的维度不为1536,则使用插值法扩展至1536维度
    embeddings = [
        expand_features(embedding, 1536) if len(embedding) < 1536 else embedding
        for embedding in embeddings
    ]

    # Min-Max normalization 归一化
    embeddings = [embedding / np.linalg.norm(embedding) for embedding in embeddings]

    # 将numpy数组转换为列表
    embeddings = [embedding.tolist() for embedding in embeddings]
    prompt_tokens = sum(len(text.split()) for text in request.input)
    total_tokens = sum(num_tokens_from_string(text) for text in request.input)

    response = {
        "data": [
            {"embedding": embedding, "index": index, "object": "embedding"}
            for index, embedding in enumerate(embeddings)
        ],
        "model": request.model,
        "object": "list",
        "usage": {
            "prompt_tokens": prompt_tokens,
            "total_tokens": total_tokens,
        },
    }

    return response


def _get_args():
    parser = ArgumentParser()
    parser.add_argument(
        "-c",
        "--checkpoint-path",
        type=str,
        default=DEFAULT_CKPT_PATH,
        help="Checkpoint name or path, default to %(default)r",
    )
    parser.add_argument(
        "--cpu-only", action="store_true", help="Run demo with CPU only"
    )
    parser.add_argument(
        "--server-port", type=int, default=8866, help="Demo server port."
    )
    parser.add_argument(
        "--server-name",
        type=str,
        default="0.0.0.0",
        help="Demo server name. Default: 127.0.0.1, which is only visible from the local computer."
        " If you want other computers to access your server, use 0.0.0.0 instead.",
    )
    parser.add_argument("--disable-gc", action="store_true",
                        help="Disable GC after each response generated.")

    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = _get_args()

    tokenizer = AutoTokenizer.from_pretrained(
        args.checkpoint_path,
        trust_remote_code=True,
        resume_download=True,
    )

    if args.cpu_only:
        device_map = "cpu"
    else:
        device_map = "auto"

    model = AutoModelForCausalLM.from_pretrained(
        args.checkpoint_path,
        device_map=device_map,
        trust_remote_code=True,
        resume_download=True,
    ).eval()

    model.generation_config = GenerationConfig.from_pretrained(
        args.checkpoint_path,
        trust_remote_code=True,
        resume_download=True,
    )
    model.generation_config.max_new_tokens = 4096

    embeddings_model = SentenceTransformer(DEFAULT_M3E_LARGE, device='cpu')

    uvicorn.run(app, host=args.server_name, port=args.server_port, workers=1)

Logo

ModelScope旨在打造下一代开源的模型即服务共享平台,为泛AI开发者提供灵活、易用、低成本的一站式模型服务产品,让模型应用更简单!

更多推荐