大家好,我是八哥。

这篇文章,我将结合自己在大模型领域的经验,给大家详细聊聊新人应该如何转行大模型赛道?

比如大模型都有哪些方向?各方向的能力要求和岗位匹配?新手转行大模型常踩的坑和常见的误区?以及入行大模型最顺滑的路径?

如果你是正打算入行大模型的校招/社招同学,请一定看完,可能会让你在入行大模型的路上,少走很多弯路。

01

大模型都有哪些方向?

如果你在求职网站搜索"大模型"关键词,看一下招聘 JD,基本可以了解现在业内对大模型工程师的需求方向和能力要求.。

总结一下,大致可以分为 4 类:

  • 做数据的(大模型数据工程师,爬虫/清洗/ETL/Data Engine/Pipeline)
  • 做平台的(大模型平台工程师,分布式训练/大模型集群/工程基建)
  • 做应用的(大模型算法工程师,搜/广/推/对话机器人/AIGC)
  • 做部署的(大模型部署工程师,推理加速/跨平台/端智能/嵌入式)

02

大部分新手的误区

如果是你,看到这几个方向,会怎么选?我估计很多人都直奔第三点去了,坚定的要做应用,走在所有工种的最前沿,做出让老板,用户都看得到的核心"产品"。

不过这里我不禁要给各位泼一点冷水,在 AI 算法这个行业,三是很吃业务经验的,如果你之前本身就是做算法的,比如是做 NLP,又或者是做语音助手,对话机器人这类的,再顺水推舟做相关方向的大模型算法工程师,这是比较合适的。

在自身业务里融入一些大模型的算法和技法,拿到实际的业务产出,去市面上也比较好找这类岗位。

但如果你是 CS 方向的实习生/应届毕业生,或者其他 IT 方向转行大模型,3 未必是一个最好的选择,大家不要带着一个误区:大模型算法工程师就是调模型,调超参,做一做预训练,做一做 finetune,SFT 之类的活。

实际上呢,这部分工作只有很少人做,基本一个 team 中只有个位数的人,或者只是算法工作的很小的一部分。

注意一点,新人进去 90% 以上都不可能直接让你干算法模型调优的活,大部分可能还是让你配环境,搭链路,清洗数据,分析数据,调研,写一写 function,tools。

这些体力活都干熟了以后,可能才会让你跑一些模型实验。其中比较出色的,脑子比较灵活的同学,才会慢慢让他们开始接触线上业务。

也有很多同学,干了好几年,还是在干一些边角料,脏活,杂活,根本接触不到核心业务。对于刚入行的新人,如果你学历背景好点,可以去大公司做 intern 然后转正,背景差一点,可以去中小公司,积累业务经验。

03

数据很重要!

然后很多人可能往往忽视了上面的 1,2,4,觉得我学了这么多算法知识,学了机器学习,深度学习,还了解大模型,再去做数据,有点屈才了。

但我想告诉你的是,1 是更多转行大模型同学更容易上岸的方式。条条大路通罗马,不是只有一条路走到黑。

首先,目前国外的大模型技术至少领先国内两年,虽然国内已经有几十上百个“大模型”了,但真正能打的并没有几个。探究原因,还是有很多技术没有突破。

算法本身来说,GPT 已经不是什么秘密了。那剩下还有什么呢,一是数据,二是工程技巧

拿数据来说,先说通用的大模型训练,数据的来源,从哪里采,数据的质量怎么把控,如何过滤有毒信息,语言的筛选与比例,数据的去重,以及数据的规范化处理,评测集的构建。这些既是体力活,又是技术活。

对于垂直领域,比如金融,电商,法律,车企,这种领域数据的构建就更考验技术了,业务数据怎么来,数据不够怎么办,完全没有数据怎么办?如果构建高质量的微调数据?

能把这些问题解决好,模型也就成功了一大半。因此,就目前的现状,对于数据工程师,特别是有经验的数据工程师,是非常稀缺的。

04

大模型平台干些啥?

然后说下 2,大模型平台工程师。如果你之前是做工程的,或者对工程比较感兴趣,我比较建议你选 2。

这二者其实并没有本质的区别,都是为了大模型业务服务的,也叫大模型基础设施的建设,作用就是让大模型 train 得更好,大模型跑得更快。

这块主要是干些啥呢?

从计算层面来说,有分布式计算,并行计算,高性能计算,有些公司对这三者也不加区分。

从硬件层面来说,有搞大模型训练集群,GPU 集群,CPU/GPU 混部集群,池子里要管理几百上千张卡,还要负责他们的利用率,机器的健康状况,有没有挂的,中小公司这块基本都是开发和运维一体的,一个工作干两个工种的活。

从平台层面来说,有做 LLMOps 的,也就是 pipeline。集数据 IO,模型训练,预测,上线,监控于一体,这种就是跟着业务团队走,做适配,造很多高效的轮子,方面业务团队使用,减少他们额外重复开发的时间。

这块整体上来说,在大模型时代稳中有升,因为实际上很多公司这方面的人都是从之前搞深度学习平台,大规模机器学习平台的人招过来的,技术上的 gap 相对比较小。因此,对于 AI 工程感兴趣的,可以选这个方向。

05

大模型部署干些啥?

最后说一下 4,大模型部署工程师。这个岗位之前也有,不过在大模型这一两年尤其的火热。

什么原因呢?

因为部署大模型太费钱了。首先模型延迟本身就高,30B 以上的模型,对算力,显存要求很高。

老板关心什么?一方面是大模型产品,也就是业务指标要好看,方便 PR。另一方面也要求控制成本(大厂/独角兽除外)。

一般企业里面,一个 P8 级别的 leader,要在公司里面抢业务,拉资源,找人力,本身就是一个不容易的事。

“降本增效”是 23 年以来,几乎所有公司的一个主旋律。所以老板们很关心你节约了多少钱,比如你把推理效率提高一倍,那就实实在在降低了一倍的成本。

回到大模型部署工程师来,这个岗位总体有两个方向的工作:云端部署和端侧部署

云端比较好理解,可以做推理加速平台,也可以随着业务走,做大模型定制化加速。

比如 Qwen-7b 的加速,还可以做大模型推理引擎,比如搜索/问答的推理引擎,一般是在高并发用户场景下,在保证用户 SLO 的前提下,最优化 latency 和 throughput。

另一个大方向是端侧的部署。也就是在消费级 GPU/NPU 以及边端设备下,部署大模型,同时让领域大模型小型化,让业务能实际工程落地。

总的来说,大模型部署工程师对工程能力,系统能力,以及硬件等方面都要有一定的了解,现在各种推理框架出来以后,降低了一点难度,但仍然是一个比较有竞争力的工种。

你得了解计算图和 OP 的优化,得了解各种推理框架,缓存/显存优化,还有 LLM 结构运行时的系统架构。这个岗位一般不推荐新人入场,因为太吃经验了。建议先从 2 进场,然后逐步转到 4。

06

总结

最后,给准备入场大模型的新人几点建议:

  1. 不要只关心 finetune,SFT,RLHF,作为系统性学习是 OK 的,切忌花太多精力。
  2. 想做应用的,建议 focus 到某个垂直领域,比如对话机器人,问答系统,金融/医疗/教育方向,找一个具体的场景,把它做好,做深。
  3. 多关心数据,data pipeline,高质量训练/测试集的构建经验,对数据的sense,是最直接,也是最适合用到未来工作当中的。
  4. 大模型不只有算法,也可以有工程。大公司拼的都是基建,平台是对业务的支撑,牛逼的 infrastrure 是大模型产品成功不可或缺的因素。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
在这里插入图片描述

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

Logo

ModelScope旨在打造下一代开源的模型即服务共享平台,为泛AI开发者提供灵活、易用、低成本的一站式模型服务产品,让模型应用更简单!

更多推荐