通用端到端OCR模型开源,拒绝多模态大模型降维打击
在AI-2.0时代,OCR模型的研究难道到头了吗!?(OCR:一种将图像中的文字转换为可编辑和可搜索文本的技术)Vary作者团队开源了第一个迈向OCR-2.0的通用端到端模型。
在AI-2.0时代,OCR模型的研究难道到头了吗!?
(OCR:一种将图像中的文字转换为可编辑和可搜索文本的技术)
Vary作者团队开源了第一个迈向OCR-2.0的通用端到端模型GOT。
用实验结果向人们证明:NoNoNo~
GOT模型效果如何?
话不多说,直接上效果图:
△ 最常用的PDF image转markdown能力
△ 双栏文本感知能力
△ 自然场景以及细粒度OCR能力
△ 动态分辨率OCR能力
△ 多页OCR能力
△ 更多符号的OCR能力
研究团队称,尽管GOT模型表现不错,但也存在一些局限,如更多的语言支持,更复杂的几何图,chart上的OCR性能。
他们说OCR-2.0的研究还远的很,GOT也还有不小提升空间(该项目在数据和算力资源上都是非常受限的)。
正是因为深知GOT以及OCR-2.0的潜力,我们希望通过开源GOT吸引更多的人,放弃VQA,再次投向强感知。都说纯OCR容易背锅,但也正好说明做的不够work,不是吗?
GOT: Towards OCR-2.0
通用OCR模型须要够通用,体现在输入输出都要通用上。
GOT的通用具体表现为:在输入方面,模型支持Scene Text OCR、Document OCR、Fine-grained OCR、More General OCR等任务。
△ 通用OCR模型须“通用”
输出方面,模型同时支持plain texts输出以及可读性强、可编辑的formatted文本输出,如markdown等。
模型的结构和训练方法,采用vision encoder+input embedding layer+decoder的pipeline。
Encoder主体采用带local attention的VITDet架构,不会让CLIP方案的全程global attention在高分辨率下激活太大,炸显存。
Encoder后两层采用Vary的双卷积设计方案。整个Encoder将1024×1024×3的图像压缩为256×1024的image tokens,足以做好A4纸级别的dense OCR。
△ GOT结构与训练流程图
研究团队将整个训练过程分为三个步骤,没有一个阶段锁LLM,过程中没有存在图像到文本的对齐阶段,进而导致损害image token的文字压缩率。
三个训练阶段分别为:
第一阶段:高效预训练encoder,GOT在整个训练过程中,没有A100级别的卡,为了节省资源,该阶段使用小型OPT-125M作为decoder为encoder提供优化方向,快速灌入大量数据。
第二阶段:联合训练encoder-decoder,该阶段GOT的基本结构搭建完成,为上一阶段预训练好的encoder,以及Qwen团队预训练好的Qwen0.5B。
研究团队稍稍加大了decoder的大小,因为该阶段需要喂入大量OCR-2.0的知识,而不少数据(如化学式的OCR)其实也是带点reasoning的,不过更小的decoder他们未敢尝试。
第三阶段:锁住encoder,加强decoder以适配更多的OCR应用场景,如支持坐标或者颜色引导的细粒度OCR(点读笔可能会用到),支持动态分辨率OCR技术(超大分辨率图可能会用到),多页OCR技术。
该feature主要是为了后续follower能更好地训练Arxiv这种数据,我们的设想是多页PDF直接训练,无须再对.tex断页而苦恼!
面对整个GOT模型设计中最困难的数据工程环节。研究团队为了构造各种各样的数据,还学习了众多数据渲染工具,包括Latex,Mathpix-markdown-it,Matplotlib,Tikz,Verovio, Pyecharts等等。
△ GOT使用到的数据渲染工具
OCR的研究才刚刚开始
关于为什么在大模型相互梭哈的时代继续研究OCR?
研究团队有他们自己的理由:
OCR一直是离落地最近的研究方向之一,是AI-1.0时代的技术结晶。
到了以LLM(LVLM)为核心的AI-2.0时代,OCR成了多模大模型的一项基本能力,各家模型甚至有梭哈之势。
多模态大模型作为通用模型,总有种降维打击OCR模型的感觉。
那么纯OCR的研究真的到头了吗?我们想说:当然没有!没准才刚刚开始。
首先盘一下AI-1.0 OCR系统和LVLM OCR的缺点:
首先是AI-1.0流水线式的OCR系统,缺点不用多说,各个模块比较独立,局部最优,维护成本也大。
最重要的是不通用,不同OCR任务需路由不同模型,不太方便。
那么多模态大模型在pure OCR任务上有什么缺陷呢?我们认为有以下两点:
1、为Reasoning让路必然导致image token数量过多,进而导致在纯OCR任务上存在bottle-neck。
Reasoning(VQA-like)能力来自LLM(decoder),要想获得更好的VQA能力(至少在刷点上),就要充分利用起LLM来,那么image token就得越像text token(至少高维上,这样就会让LLM更舒服)。
试想一下,100个text token在LLM词表上能编码多少文字?那么一页PDF的文字,又需要多少token呢?不难发现,保VQA就会导致在做OCR任务上,尤其是dense OCR任务上,模型搞得比较丑陋。
例如,一页PDF图片只有A4纸大小,很多LVLM要都需要切图做OCR,切出几千个image token。单张都要切图,拿出多页PDF拼接图,阁下又当如何应对?
我们认为对于OCR模型这么多token大可不必。
2、非常直观的一点就是模型太大,迭代困难。
要想引入新OCR feature如支持一项新语言,不是SFT一下就能训进模型的,得打开vision encoder做pre-training或者post-training,这都是相当耗资源的。
对于OCR需求来说太浪费了。
有人会说,小模型能同时做好这么多OCR任务吗?
我们的答案是肯定的,而且甚至还能更好
论文地址:https://arxiv.org/pdf/2409.01704
项目地址:https://github.com/Ucas-HaoranWei/GOT-OCR2.0
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)