近期,Facebook母公司Meta发布其首个开源可商用大语言模型LLama 2。据悉,LLama 2是Meta大语言模型Llama模型的最新商用版本,也是Meta首个免费商用的大语言模型。

 

魔搭社区第一时间针对LLama 2 系列模型的推理和微调做了适配,让开发者可以第一时间玩起来Llama 2。

 

环境配置与安装

1. 本文可在单卡3090的环境配置下运行 (显存要求16G)

2. python>=3.8

 

服务器连接与环境准备

# 服务器连接 (CentOS)
ssh root@xxx.xxx.xxx.xxx  # 可通过vscode连接
passwd  # 修改root密码
lsb_release -a  # 查看操作系统版本

# 安装git并配置
yum install git
git config --global user.name "llama2" 
git config --global user.email "llama2@abc.com"
git config --global init.defaultBranch main
git config --list

# 创建用户, 并设置密码(当然你也可以在root下操作)
useradd -d /home/llama2 -m llama2
passwd llama2
su llama2

# 安装miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
# 一直[ENTER], 最后一个选项yes即可
sh Miniconda3-latest-Linux-x86_64.sh

# conda虚拟环境搭建
conda create --name modelscope python=3.10
conda activate modelscope

# pip设置全局镜像与相关python包安装
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
pip install numpy pandas matplotlib scikit-learn
pip install transformers datasets -U
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
pip install tqdm tensorboard torchmetrics sentencepiece charset_normalizer
pip install accelerate transformers_stream_generator

# 安装最新版modelscope
pip install "modelscope==1.7.2rc0" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
# Resolve torchmetrics dependencies and update numpy
pip install numpy -U

git clone ModelScope,运行示例代码

git clone https://github.com/modelscope/modelscope.git

进入python环境,获取环境基本信息

# https://github.com/modelscope/modelscope/blob/master/examples/pytorch/llm/_common.py
from _common import *

device_ids = [0, 1]
logger.info(device_ids)
select_device(device_ids)
seed_everything(42)

 

模型链接和下载

LLama 2系列模型现已在ModelScope社区开源,包括:

 

LLaMA-2-7B

模型链接:https://modelscope.cn/models/modelscope/Llama-2-7b-ms/summary

 

LLaMA-2-7B-chat

模型链接:https://modelscope.cn/models/modelscope/Llama-2-7b-chat-ms/summary

 

更多的LLaMa-2系列模型,社区上架中~~

 

社区支持直接下载模型的repo. 通过如下代码,实现模型下载,以及load model, tokenizer:

# ### Loading Model and Tokenizer
model_dir = snapshot_download('modelscope/Llama-2-7b-ms', 'v1.0.1')
model, tokenizer = get_llama2_model_tokenizer(model_dir)

 

模型推理

LLaMA-2-7B推理代码

from modelscope import snapshot_download, Model
from modelscope.models.nlp.llama2 import Llama2TokenizerFast
model_dir = snapshot_download("modelscope/Llama-2-7b-ms", 'v1.0.1')
model = Model.from_pretrained(model_dir)
tokenizer = Llama2TokenizerFast.from_pretrained(model_dir)

prompt = "Hey, are you conscious? Can you talk to me?"
inputs = tokenizer(prompt, return_tensors="pt")

# Generate
generate_ids = model.generate(inputs.input_ids, max_length=30)
print(tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0])

 

数据集链接和下载

这里使用alpaca-gpt4-data-zh,alpaca-gpt4-data-en作为指令微调数据集(保证代码的完整性)。

from modelscope import MsDataset

dataset_zh = MsDataset.load("AI-ModelScope/alpaca-gpt4-data-zh", split="train")
dataset_en = MsDataset.load("AI-ModelScope/alpaca-gpt4-data-en", split="train")
print(len(dataset_zh["instruction"]))
print(len(dataset_en["instruction"]))
print(dataset_zh[0])

"""Out
48818
52002
{'instruction': '保持健康的三个提示。', 'input': None, 'output': '以下是保持健康的三个提示:\n\n1. 保持身体活动。每天做适当的身体运动,如散步、跑步或游泳,能促进心血管健康,增强肌肉力量,并有助于减少体重。\n\n2. 均衡饮食。每天食用新鲜的蔬菜、水果、全谷物和脂肪含量低的蛋白质食物,避免高糖、高脂肪和加工食品,以保持健康的饮食习惯。\n\n3. 睡眠充足。睡眠对人体健康至关重要,成年人每天应保证 7-8 小时的睡眠。良好的睡眠有助于减轻压力,促进身体恢复,并提高注意力和记忆力。'}
"""

 

模型训练最佳实践

开源代码:

https://github.com/modelscope/modelscope/blob/master/examples/pytorch/llm/llm_sft.py

 

微调过程分为如下几步:

  1. 准备环境
  2. 使用modelscope下载模型, 并导入
  3. 使用modelscope提供的微调方法构建最终模型
  4. 使用modelscope提供的Trainer对模型进行微调

准备环境及命令后参数导入:

from _common import *


@dataclass
class Arguments:
    device: str = '0,1'  # e.g. '-1'; '0'; '0,1'
    seed: int = 42
    model_type: str = field(
        default='llama2-7b',
        metadata={
            'choices':
            ['baichuan-7b', 'baichuan-13b', 'chatglm2', 'llama2-7b']
        })
    data_sample: Optional[int] = None
    #
    lora_target_modules: Optional[List[str]] = None
    lora_rank: int = 8
    lora_alpha: int = 32
    lora_dropout_p: float = 0.1
    #
    gradient_checkpoint: bool = True
    batch_size: int = 1
    max_epochs: int = 1
    eval_interval: int = 500
    learning_rate: float = 1e-4
    weight_decay: float = 0.01
    n_accumulate_grad: int = 16
    grad_clip_norm: float = 1.
    warmup_iters: int = 200
    last_max_checkpoint_num: int = 1
    best_max_checkpoint_num: int = 1
    #
    logging_interval: int = 5
    tb_interval: int = 5

    def __post_init__(self):
        if self.lora_target_modules is None:
            if self.model_type in {'baichuan-7b', 'baichuan-13b'}:
                self.lora_target_modules = ['W_pack']
            elif self.model_type == 'chatglm2':
                self.lora_target_modules = ['query_key_value']
            elif self.model_type == 'llama2-7b':
                self.lora_target_modules = ['q_proj', 'k_proj', 'v_proj']
            else:
                raise ValueError(f'model_type: {self.model_type}')


def parse_args() -> Arguments:
    args, = HfArgumentParser([Arguments]).parse_args_into_dataclasses()
    return args


args = parse_args()
logger.info(args)
select_device(args.device)
seed_everything(args.seed)

导入模型:

# ### Loading Model and Tokenizer
if args.model_type == 'baichuan-7b':
    model_dir = snapshot_download('baichuan-inc/baichuan-7B', 'v1.0.5')
    model, tokenizer = get_baichuan_model_tokenizer(model_dir)
elif args.model_type == 'baichuan-13b':
    model_dir = snapshot_download('baichuan-inc/Baichuan-13B-Base', 'v1.0.2')
    model, tokenizer = get_baichuan_model_tokenizer(model_dir)
elif args.model_type == 'chatglm2':
    model_dir = snapshot_download('ZhipuAI/chatglm2-6b', 'v1.0.6')
    model, tokenizer = get_chatglm2_model_tokenizer(model_dir)
elif args.model_type == 'llama2-7b':
    model_dir = snapshot_download('modelscope/Llama-2-7b-ms', 'v1.0.0')
    model, tokenizer = get_llama2_model_tokenizer(model_dir)
else:
    raise ValueError(f'model_type: {args.model_type}')

#
if args.gradient_checkpoint:
    # baichuan-13b does not implement the `get_input_embeddings` function
    if args.model_type == 'baichuan-13b':

        def get_input_embeddings(self):
            return self.model.embed_tokens

        model.__class__.get_input_embeddings = get_input_embeddings.__get__(
            model)
    model.gradient_checkpointing_enable()
    model.enable_input_require_grads()

准备LoRA:

# ### Preparing lora
lora_config = LoRAConfig(
    replace_modules=args.lora_target_modules,
    rank=args.lora_rank,
    lora_alpha=args.lora_alpha,
    lora_dropout=args.lora_dropout_p)
logger.info(f'lora_config: {lora_config}')
Swift.prepare_model(model, lora_config)
#
show_freeze_layers(model)
print_model_info(model)
_p: Parameter = list(model.parameters())[100]
logger.info(f'device: {_p.device}, dtype: {_p.dtype}')
model.bfloat16()

导入datasets:

# ### Loading Dataset
tokenize_function = partial(tokenize_function, tokenizer=tokenizer)
train_dataset, val_dataset = get_alpaca_en_zh_dataset(
    tokenize_function, split_seed=42, data_sample=args.data_sample)
# Data analysis
stat_dataset(train_dataset)
stat_dataset(val_dataset)
data_collate_fn = partial(data_collate_fn, tokenizer=tokenizer)
print_example(train_dataset[0], tokenizer)

配置Config:

# ### Setting Config
cfg_file = os.path.join(model_dir, 'configuration.json')
#
T_max = get_T_max(len(train_dataset), args.batch_size, args.max_epochs, True)
work_dir = get_work_dir(f'runs/{args.model_type}')
config = Config({
    'train': {
        'dataloader': {
            'batch_size_per_gpu': args.batch_size,
            'workers_per_gpu': 1,
            'shuffle': True,
            'drop_last': True,
            'pin_memory': True
        },
        'max_epochs':
        args.max_epochs,
        'work_dir':
        work_dir,
        'optimizer': {
            'type': 'AdamW',
            'lr': args.learning_rate,
            'weight_decay': args.weight_decay,
            'options': {
                'cumulative_iters': args.n_accumulate_grad,
                'grad_clip': {
                    'norm_type': 2,
                    'max_norm': args.grad_clip_norm
                }
            }
        },
        'lr_scheduler': {
            'type': 'CosineAnnealingLR',
            'T_max': T_max,
            'eta_min': 0,
            'options': {
                'by_epoch': False,
                'warmup': {
                    'type': 'LinearWarmup',
                    'warmup_ratio': 0.1,
                    'warmup_iters': args.warmup_iters
                }
            }
        },
        'hooks': [
            {
                'type': 'CheckpointHook',
                'by_epoch': False,
                'interval': args.eval_interval,
                'max_checkpoint_num': args.last_max_checkpoint_num
            },
            {
                'type': 'EvaluationHook',
                'by_epoch': False,
                'interval': args.eval_interval
            },
            {
                'type': 'BestCkptSaverHook',
                'metric_key': 'loss',
                'save_best': True,
                'rule': 'min',
                'max_checkpoint_num': args.best_max_checkpoint_num
            },
            {
                'type': 'TextLoggerHook',
                'by_epoch': True,  # Whether EpochBasedTrainer is used
                'interval': args.logging_interval
            },
            {
                'type': 'TensorboardHook',
                'by_epoch': False,
                'interval': args.tb_interval
            }
        ]
    },
    'evaluation': {
        'dataloader': {
            'batch_size_per_gpu': args.batch_size,
            'workers_per_gpu': 1,
            'shuffle': False,
            'drop_last': False,
            'pin_memory': True
        },
        'metrics': [{
            'type': 'my_metric',
            'vocab_size': tokenizer.vocab_size
        }]
    }
})

开启微调:

# ### Finetuning
def cfg_modify_fn(cfg: Config) -> Config:
    cfg.update(config)
    return cfg


trainer = EpochBasedTrainer(
    model=model,
    cfg_file=cfg_file,
    data_collator=data_collate_fn,
    train_dataset=train_dataset,
    eval_dataset=val_dataset,
    remove_unused_data=True,
    seed=42,
    device='cpu',  # No placement for model, leave the model to `device_map`
    cfg_modify_fn=cfg_modify_fn,
)

trainer.train()

可视化:

Tensorboard 命令: (e.g.)

tensorboard --logdir /home/llama2/my_git/modelscope/runs/llama2-7b/v1-20230719-161919 --port 6006

# ### Visualization
tb_dir = os.path.join(work_dir, 'tensorboard_output')
plot_image(tb_dir, ['loss'], 0.9)

 

训练损失:

验证损失:

资源消耗

LLaMA-2-7B用lora的方式训练的显存占用如下,大约在16G. (batch_size=1, max_length=2048)

推理训练后的模型

 

开源代码:

https://github.com/modelscope/modelscope/blob/master/examples/pytorch/llm/llm_infer.py

# ### Setting up experimental environment.
from _common import *


@dataclass
class Arguments:
    device: str = '0'  # e.g. '-1'; '0'; '0,1'
    model_type: str = field(
        default='llama2-7b',
        metadata={
            'choices':
            ['baichuan-7b', 'baichuan-13b', 'chatglm2', 'llama2-7b']
        })
    ckpt_fpath: str = ''  # e.g. '/path/to/your/iter_xxx.pth'
    eval_human: bool = False  # False: eval test_dataset
    data_sample: Optional[int] = None
    #
    lora_target_modules: Optional[List[str]] = None
    lora_rank: int = 8
    lora_alpha: int = 32
    lora_dropout_p: float = 0.1
    #
    max_new_tokens: int = 512
    temperature: float = 0.9
    top_k: int = 50
    top_p: float = 0.9

    def __post_init__(self):
        if self.lora_target_modules is None:
            if self.model_type in {'baichuan-7b', 'baichuan-13b'}:
                self.lora_target_modules = ['W_pack']
            elif self.model_type == 'chatglm2':
                self.lora_target_modules = ['query_key_value']
            elif self.model_type == 'llama2-7b':
                self.lora_target_modules = ['q_proj', 'k_proj', 'v_proj']
            else:
                raise ValueError(f'model_type: {self.model_type}')
        #
        if not os.path.isfile(self.ckpt_fpath):
            raise ValueError('Please enter a valid fpath')


def parse_args() -> Arguments:
    args, = HfArgumentParser([Arguments]).parse_args_into_dataclasses()
    return args


args = parse_args()
logger.info(args)
select_device(args.device)

# ### Loading Model and Tokenizer
if args.model_type == 'baichuan-7b':
    model_dir = snapshot_download('baichuan-inc/baichuan-7B', 'v1.0.5')
    model, tokenizer = get_baichuan_model_tokenizer(model_dir)
elif args.model_type == 'baichuan-13b':
    model_dir = snapshot_download('baichuan-inc/Baichuan-13B-Base', 'v1.0.2')
    model, tokenizer = get_baichuan_model_tokenizer(model_dir)
elif args.model_type == 'chatglm2':
    model_dir = snapshot_download('ZhipuAI/chatglm2-6b', 'v1.0.6')
    model, tokenizer = get_chatglm2_model_tokenizer(model_dir)
elif args.model_type == 'llama2-7b':
    model_dir = snapshot_download('modelscope/Llama-2-7b-ms', 'v1.0.0')
    model, tokenizer = get_llama2_model_tokenizer(model_dir)
else:
    raise ValueError(f'model_type: {args.model_type}')

# ### Preparing lora
lora_config = LoRAConfig(
    replace_modules=args.lora_target_modules,
    rank=args.lora_rank,
    lora_alpha=args.lora_alpha,
    lora_dropout=args.lora_dropout_p,
    pretrained_weights=args.ckpt_fpath)
logger.info(f'lora_config: {lora_config}')
Swift.prepare_model(model, lora_config)
model.bfloat16()  # Consistent with training

# ### Inference
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_config = GenerationConfig(
    max_new_tokens=args.max_new_tokens,
    temperature=args.temperature,
    top_k=args.top_k,
    top_p=args.top_p,
    do_sample=True,
    pad_token_id=tokenizer.eos_token_id)
logger.info(generation_config)


def inference(data: Dict[str, Optional[str]]) -> str:
    input_ids = tokenize_function(data, tokenizer)['input_ids']
    print(f'[TEST]{tokenizer.decode(input_ids)}', end='')
    input_ids = torch.tensor(input_ids)[None].cuda()
    attention_mask = torch.ones_like(input_ids)
    generate_ids = model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        streamer=streamer,
        generation_config=generation_config)
    output_text = tokenizer.decode(generate_ids[0])
    return output_text


if args.eval_human:
    while True:
        instruction = input('<<< ')
        data = {'instruction': instruction, 'input': None, 'output': None}
        inference(data)
        print('-' * 80)
else:
    _, test_dataset = get_alpaca_en_zh_dataset(
        None, True, split_seed=42, data_sample=args.data_sample)
    mini_test_dataset = test_dataset.select(range(10))
    for data in mini_test_dataset:
        output = data['output']
        data['output'] = None
        inference(data)
        print()
        print(f'[LABELS]{output}')
        print('-' * 80)
        # input('next[ENTER]')

点击查看模型:

modelscope.cn/models/modelscope/Llama-2-7b-ms/summary

Logo

ModelScope旨在打造下一代开源的模型即服务共享平台,为泛AI开发者提供灵活、易用、低成本的一站式模型服务产品,让模型应用更简单!

更多推荐